Exam Symmetry in Physics

Date	May 12, 2015
Room	A. Jacobshal 01
Time	18:30 - 21:30
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- You are not allowed to use the lecture notes, nor other notes or books
- All subquestions (a, b, etc) of the 3 exercises (16 in total) have equal weight
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Exercise 1

Consider a pyramid with a regular square as base with corners labeled by A, B, C, D and its apex E above the center O of the square base (see figure). Its symmetry group is $C_{4 v}$.

(a) Identify all symmetry transformations that leave this pyramid invariant and divide them into conjugacy classes, using geometrical arguments.
(b) Give an identification between elements of $C_{4 v}$ and D_{4} and argue that the two groups are isomorphic.
(c) Construct the character table of $C_{4 v}$ and explain how the entries are obtained.
(d) Construct explicitly the three-dimensional vector representation D^{V} for the two transformations that generate $C_{4 v}$ and check the determinants.
(e) Decompose D^{V} of $C_{4 v}$ into irreps and use this to conclude whether this group in principle allows for an invariant three-dimensional vector, such as an electric dipole moment.
(f) Do the same, i.e. answer questions (d) and (e), for the axial-vector representation D^{A}, and conclude whether the group in principle allows for an invariant three-dimensional axial-vector, such as a magnetic dipole moment.
(g) Determine the characters of the direct product representation $D^{V} \otimes D^{V}$ of $C_{4 v}$ and use them to determine the number of independent invariant tensors $T^{i j}$ $(i, j=1,2,3)$ (no need to construct them explicitly).

Exercise 2

Consider a non-isotropic medium with a conductivity tensor $\sigma_{i j} \neq \delta_{i j}$ in threedimensions $(i, j=1,2,3)$. When exposed to an electric field \vec{E}, there will be an electrical current \vec{j} in the medium, according to $j_{i}=\sigma_{i j} E_{j}$ (here and below summation over repeated indices is implicit).
(a) Use the transformation properties of the equation $j_{i}=\sigma_{i j} E_{j}$ to derive that $\sigma_{i j}$ transforms into $\sigma_{k l}^{\prime}=D_{k i}^{V} D_{l j}^{V} \sigma_{i j}$ under (subgroups of) rotations.
(b) Show that $\sigma_{i j}$ is invariant if it satisfies $\sigma D^{V}=D^{V} \sigma$.
(c) Explain why in the case of $S O(3)$ symmetry, in other words for an isotropic medium, the only invariant tensor is proportional to the identity.
(d) Write down the most general form of an invariant σ tensor for a medium that has an $S O(2)$ symmetry around the \hat{z}-axis.
(e) Explain why the trace of $\sigma_{i j}$ transforms as a scalar.
(f) Use $j_{i}=\sigma_{i j} E_{j}$ to explain how $\epsilon_{i j k} \sigma_{j k}$ transforms under $O(3)$ transformations.

Exercise 3

Consider the group $S O(2)$ of rotations around the \hat{z}-axis in three dimensions. Consider its action on the angular momentum states $|l, m\rangle$ through the operator

$$
\begin{equation*}
U\left(R_{z}\right)=\exp \left(-\frac{i}{\hbar} \theta L_{z}\right) \tag{1}
\end{equation*}
$$

where $R_{z}=R_{z}(\theta)$ is a rotation over an angle θ around the \hat{z}-axis.
(a) Write down the explicit matrix for L_{z} acting on the space of $|2, m\rangle$ states.
(b) Write down the explicit matrix $D^{(l)}\left(R_{z}\right)$ for $U\left(R_{z}\right)$ with $l=2$.
(c) Show that $D^{(l=2)}\left(R_{z}\right) \in U(5)$ and explain how it is related to $S O(2)$.

